
XpkMaster

XpkMaster ii

COLLABORATORS

TITLE :

XpkMaster

ACTION NAME DATE SIGNATURE

WRITTEN BY April 12, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

XpkMaster iii

Contents

1 XpkMaster 1

1.1 Welcome to the XPK distribution . 1

1.2 The contents of the distribution . 2

1.3 xpk programs . 2

1.4 about . 4

1.5 history . 4

1.6 Preferences system overview . 5

1.7 preferences - xpkmaster . 6

1.8 preferences - global . 8

1.9 preferences - xpkmasterprefs . 8

1.10 filepatterns . 9

1.11 xfd support . 10

1.12 XPK - A STANDARD FOR DATA COMPRESSION . 11

1.13 gnu-license . 13

1.14 Documentation of the included sub libraries . 19

1.15 cbr0 . 20

1.16 dlta . 21

1.17 duke . 22

1.18 fast . 22

1.19 feal . 25

1.20 hfmn . 27

1.21 huff . 28

1.22 idea . 31

1.23 impl . 35

1.24 mash . 36

1.25 none . 38

1.26 nuke . 38

1.27 rake . 39

1.28 shri . 39

1.29 smpl . 40

XpkMaster iv

1.30 sqsh . 41

1.31 c-utils . 42

1.32 xbench . 42

1.33 xdir . 44

1.34 xloadseg . 45

1.35 xpack . 45

1.36 xpk . 47

1.37 xquery . 48

1.38 xtype . 49

1.39 xup . 49

1.40 xscan . 49

1.41 contacts . 51

1.42 contact dirk stöcker . 53

1.43 contact christian von roques . 53

1.44 contact bryan ford . 53

1.45 contact urban dominik müller . 54

1.46 contact karsten dageförde . 54

1.47 contact stephan fuhrmann . 54

1.48 contact martin hauner . 54

1.49 contact john hendrikx . 54

1.50 contact zdenek kabelac . 55

1.51 contact jorma oksanen . 55

1.52 contact jan schwenke . 55

1.53 contact peter struijk . 55

1.54 contact marc zimmermann . 55

1.55 contact matthias meixner . 55

1.56 contact kristian nielsen . 56

1.57 contact nicola salmoria . 56

1.58 contact matthias scheler . 56

1.59 contact christian schneider . 56

XpkMaster 1 / 56

Chapter 1

XpkMaster

1.1 Welcome to the XPK distribution

Welcome to the eXternal PacKer (XPK) library system for easier ←↩
handling

of crunching and decrunching.

About
About this distribution

Archive Contents
Contents of distributed archives

Version Info
What changes are made

GNU - License
License for some of added libs/programs

Philosophy
Some background information

Version 4 news

Preferences
Preferences system

XFD Support
Alien cruncher support

SubLibs
Documentation for supplied sublibraries

C-Utils
Documentation of the included programs

XPK programs
XPK supporting/using programs

XpkMaster 2 / 56

Contacts
Addresses of people related to XPK

Try WWW addresses
http://www.amigaworld.com/support/xpkmaster/

or http://home.pages.de/~Gremlin/xpkmaster.html

Here all files are accessable (also the xpk_Crypt.lha archive).
On this page is also a list of a lot of XPK sub libraries and XPK programs.

1.2 The contents of the distribution

xpk_User.lha (util/pack)
C/ Various

programs
using XPK.

catalogs/ Catalog files for use with locale.library.
EnvArc Preferences file example.
Libs/xpkmaster.library The heart of the XPK system.
Libs/compressors/ Compression

sublibraries
.

Libs_1.3/ xpkmaster.library for OS 1.3.
Libs_68020+/ 68020+ versions of some

sublibraries
.

Prefs/ Preferences program.
Install Installer script for complete distribution.
XpkMaster.guide This documentation.

xpk_Crypt.lha (not distributed in USA, in Germany util/crypt)
libs/compressors/ Encryption

sublibraries
.

source/ Source files of encryption libs.
This archive can be accessed only on German Aminet servers or by calling
my WWW page (See below).

xpk_Develop.lha (util/pack)
Autodocs/ Programmer documentations of libraries.
HotHelp/ HotHelp documentation.
Include/ Includes for programmers.

xpk_Source.lha (util/pack)
Sources to libraries and utility programs.

1.3 xpk programs

XFH: (1.40)

XFH-Handler is a DOS handler which uses xpkmaster.library to provide

XpkMaster 3 / 56

transparent access to compressed files in a given directory or partition.
All compression/decompression is done automatically by the handler when
files are read or written. Compression is optional and may be switched at
any time, allowing for fine control over storage of data. The compression
method may be changed at will. Decompression is always automatic, you
do not have to care about which compressor was used to create the files.

Author:
Matthias Scheler
Where to find: in Aminet as util/pack/XFH.lha

XPK-KNIGHT: (1.05)

XPK-KNIGHT is a free configurable, easy graphic user interface for
comfortable usage of most of the important functions whithin the
xpkmaster.library and its correspondending XPK packers.

Author: Alexander Grossberger <nobody@betei.franken.de>
Where to find: in Aminet as util/pack/xpk-Knight_???.lha

XpkArchive System: (2.0)

As stated in

Philosophy
above the xpkmaster.library there exists also the

xpkarchive.library, which handles archive creation like LhA or Zoo. Please
have a look at this package too!

Author:
Matthias Meixner
Where to find: in Aminet as util/arc/XpkArchivePackage??.lha

XPKatana: (1.2)

Full-featured GUI for XPK, allows (un)packing, features a complete ARexx
port, supports batch jobs, etc... Also supports FileID.library for
filetype identification, and xfdmaster.library for alien packer
decrunching, making it possible to repack most alien packing formats into
a regular XPK format.

Author: Eric Sauvageau <sauvae00@libertel.montreal.qc.ca>
Where to find: in Aminet as util/pack/xpkatana??.lha

XpkCybPrefs: (1.2)

XpkCybPrefs is an alternative to XpkMasterPrefs. It provides a transparent
"intelligent" packing, according to the filetype (by simply setting "USER"
as XPK packer and configuring once for all, you get everything working).
Some features: Size conditions, "Multipacking" (trying multiple packers on
data, keeping the best or fastest-decrunching etc... one!!), report-window
with full info, user-choice requester ETC ETC... (100% user-configurable)

Author: Alexis Nasr <nasr@hol.fr>
Where to find: in Aminet as util/pack/XpkCybPrefs.lha

XpkMaster 4 / 56

1.4 about

This distribution was first created by
Dirk Stöcker
in October 1996.

The concept, the most stuff and documentations of version 2.x distribution
were made by

Bryan Ford
and

Urban Dominik Müller
. A lot of bug fixes made

Christian von Roques
. I continue XPK development now, because the above

mentioned persons have no time to do further support.

To the authors of programs supporting XPK:

Please send me a short description (10 lines maximum) of your program. I
compile a list of XPK supporting programs from this information.
Please include information, where to find your program (e.g. in Aminet
util/pack).

About this documentation:

I created this documentation starting from a lot of single files. To cut
the size a little bit down I had to omit much useless or double
information. If I deleted something I should not, please tell me and I will
reincorporate it. Error reports and newer docs or corrected contact
addresses are welcome too. Some of them are probably outdated.

If you have newer versions of included sub libraries or other enhancements
please contact me as well.

If someone feels, like translating the Installer script or the catalog
files for xpkmaster.library and XpkMaster preferences program, send it, and
I will include the stuff in next release.

1.5 history

When the version number has a character attached, the xpkmaster library
did not change, but only the distribution was updated.

4.33a: xpkNONE.library had a little bug, which could cause crashes.
Install script has been fixed a bit as well.

4:33: fixed some little problems and removed acess to address 4 (SysBase
variable is used instead now). This makes the file 400 Bytes larger, but
hopefully a little bit faster and better designed.

4.32: bug fix (crash) in XpkQuery function (this time not my fault, but a
compiler error)

XpkMaster 5 / 56

4.31: fixed Enforcer hit, new xBench version (better TEST routine), some
optimizations and bug fixes

4.29: Sorry, sorry, but 4.27 did not really fix the bug. Now it is fixed!
xpkmaster is now 100% C code (also startup), which results in 100 byte
longer executable, but it should be portable a lot easier now.

4.27: Fixed serious bug added in last version, with files larger than
65535 bytes. Thanks to Thomasz Kepa for reporting it. Added missing catalog
texts.

4.26: Added xfdmaster.library support and cleaned up the code a lot. XPK
can decrunch StoneCracker, RNC, CrunchMania and Imploder files now.
The internal PowerPacker support has been removed, as xfdmaster.library
does this now. So powerpacker.library is no longer required.
Thanks a lot to Georg Hörmann for making this possible.
Changed a lot in design of XpkPassRequest. It uses gadtools library and
is a lot nicer now (has a window title, shows stars, timeout uses
timer.device, ...).

4.16: Changed A2 contents of preferences RecogFunc to TagList (I hope
nobody did use it till now.). This causes problems with XpkCybPrefs version
1.0. Use newer versions only!

4.14a: fixed Installer script, rewrote xDir, added more language files

4.14: fixed low-mem-bug in NUKE and DUKE, little changes in master lib,
fixed IDEA bug (thanks to Alexis Nasr for finding a solution), fixed bug in
XpkMasterPrefs, added some parts to the docs, added length check and OR
specifier to file pattern check, added pattern matching for xBench

4.13: fixed Installer script, added xBench ALL and SAVE option, removed
error in Expunge code of library, fixed xQuery

4.12: added automatic password request and preferences system, cleared the
code a bit and removed obsolete code, removed xDrop from distribution,
wrote new xBench utility.

4.0: added 5 new functions, fixed some little bugs, added first stage of
preferences system (XpkMaster and XpkMasterPrefs programs), library is now
OS2.0+ only

3.12: special OS1.3 only version, removed locale and utility library stuff

3.11: recompiled the library with SAS 6.57, cleaned up the complete
package, removed XFH

3.10: I reworked the source and added locale.library support, a better
library header and another way of debuging.
NOTE: The include files moved to xpk directory. Before it was libraries.

1.6 Preferences system overview

The preferences system allows packing of files depending on their ←↩
file

XpkMaster 6 / 56

type, their size or name. It is useful especially for programs handling a
lot of different files like backup tools. With type depending packing you
get a faster and shorter backup. It is useful for stacker tools like XFH
also. But the system may be useful for lots of other situations.

It consists of 2 parts:

1) Program for preferences settings in "Prefs" directory:
XpkMaster

This program also allows setting
global xpkmaster defines
.

2) Shell utility to handle preferences files on run-time:
XpkMasterPrefs

* Programmers should read the autodoc file xpkpreferences.doc. ←↩
There is

* told how preferences are handled and how you can replace the preferences

* system with you own one. There already exists another system called

* XpkCybPrefs.

For the user it is really easy to use: You only need to select the sub
library ’USER’ in the programs which use xpk for packing. This USER library
is no real library, but a dummy (it does not exist in LIBS:compressors).
Programs accessing the xpk libraries direct, or scanning LIBS:compressors
themself are thus not able to use the new preferences!

When preferences are not activated and you select USER you get an error.

To get the preferences active you either need to create a preferences file
with

XpkMaster
and to run

XpkMasterPrefs
or to install any other system

like XpkCybPrefs.

The global preferences are used all time when needed (and installed), but
may be disabled by certain programs.

xpkmaster.library does not access any of the files itself, but only
accesses the preferences semaphore. xpkmaster.library thus never causes any
DOS-Requests (except when using file access as source or destination and
loading sub libraries). That’s why it can be used in multitasking
unfriendly environments like for certain games.

1.7 preferences - xpkmaster

It is a normal preferences program like Serial, Printer, Locale, ←↩
...

This program is used to set global xpkmaster defines (TimeOut, use of xex
libraries, ...) and to define file types and corresponding packing methods.

The screen is divided into left and right part. On left side there is a
list of all filetypes. 4 gadgets allow manipulation of the entries: move up

XpkMaster 7 / 56

and down type, delete type and add new type. First entry always exists and
cannot be deleted/moved. This is default entry. It’s name can be changed,
but after reloading saved data the default name applies again. When adding
a new type, the data from default type is copied into new type.

The right side allows manipulation of the filetype:

Name Pattern:
Specify a standard AmigaDOS pattern describing the filetype. Using field
File Pattern is better, because some programs do not submit file names or
use dummy names. It is always better to find a File Pattern description,
than a Name Pattern.

File Pattern:
This allows to describe a file type by comparing the file contents with a
defined pattern. See

filepatterns
for pattern description and examples.

Library Name:
Four letter ID of library you want use for packing.

Mode:
Mode used for packing. This is a decimal number from 0 to 100.

ChunkSize:
ChunkSize used for packing. See autodoc files for better description. Most
time it should be 0.

PackMode:
Define if you want to pack the file, return an error or do not pack the
file. When selected ’return error’, the caller program gets told, that
packing was not possible. When selecting ’do not pack’, the file is passed
through without changes. If these two type are selected, Library name, Mode
and ChunkSize fields are disabled.
Modus ’do not pack’ may produce errors on decrunching with certain backup
programs. Try using ’return error’ for these instead. If this does not
work, you cannot use any of these two (for example in Diavolo backup), but
only normal type selection. You may choose packer "NONE" for the previous
NoPack/ReturnError entries.

For the last part, see
global defines
. These defines are not file type

specific, but xpkmaster global.

The last three gadgets (Save, Use, Cancel) and the menus are equal to
standard prefs files and easy understandable.

The patterns: When both pattern types are specified, both must be true,
to specify a filetype.

Example: GIF files
1) filepattern and no namepattern is specified:

XpkMaster recognizes all GIF files
2) filepattern and name pattern (#?.gif) is specified:

XpkMaster recognizes all GIF files, ending with .gif

XpkMaster 8 / 56

3) on name pattern is specified:
XpkMaster recognizes all files ending with #?.gif (also if these files
are not GIF files!)

A correct file pattern should most times be enough and better as a name
pattern. So example 1 is nearly in all cases the best way!

1.8 preferences - global

These settings allow to define some global xpkmaster.library ←↩
behaviour. All

different preferences systems should support these defines.

Use XFD:
Should xpkmaster use xfdmaster.library for decrunching custom file ←↩

types,
or not? Not all xfdmaster file types are supported. XPK can decrunch only
types, which support calculation of uncrunched file size before
uncrunching. This is turned off by default, but I suggest to turn it on.

Use XEX:
Should xpkmaster install list, where the scan routines of xex libraries
are hold. This is necessary to recognize custom filetypes on decrunching.
It is not imlemented at the moment.

Auto Password:
Should xpkmaster use automatic password requester, when password is needed,
but not supplied? Password requester quits after a definable time value.

Timeout:
Define the time password request stays open with no user interaction. After
that time the requester automatically quits, when no user-action happend.
Default is 120 seconds.

1.9 preferences - xpkmasterprefs

This program is like IPrefs. It loads the file ENV:xpkmaster.prefs and
makes it possible for xpkmaster.library to access the data. How this is
done is explained in the autodoc file xpkpreferences.doc. Everytime you
change the file ENV:xpkmaster.prefs by selecting USE or SAVE in
XpkMaster preferences program, the data is updated automatically. So after
selecting USE, xpkmaster.library uses the new settings.

NOTE: The filetypes are scanned in same order, as you entered them in
XpkMaster preferences program. There is only one exception: The default
type (displayed first always) is not scanned, but used when no other type
matches (which means it is the last always!).

How to install:
Copy it to C: directory and start the program before you use xpkmaster
library first. The best place is S:User-StartUp (or S:StartUp-Sequence in

XpkMaster 9 / 56

some cases). There you may add the line

Run >NIL: XpkMasterPrefs

The rest will be done automatically by the program. To kill the program
call it with "XpkMasterPrefs QUIT" or send it a CTRL-C break signal.

You can start it from WorkBench (or from drawer WBStartUp) as well. You
only need to add a icon and set the tooltype "DONOTWAIT". But quitting the
program from WorkBench is impossible. You need to enter shell for that and
use above command line.

1.10 filepatterns

The file pattern consists of a mode describing lower case character
(l, h, m, v, r, g, s) and corresponding hexadecimal data. It helps to
describes file type specific parts.
You may specify different types in one string by seperating the types by
’|’. So text1|text2 means that the file has to match either text1 or text2.

Control Characters:

For these control caracters the data consists of a $/hex value with upto
8 digits (ULONG) [option m allows only 4 digits (UWORD)].

l - filesize must be shorter (LOWER) than specified value
h - filesize must be larger (HIGHER) than specified value

When using these options, be sure you do not forget any size. When
specifying a type l100 and one type h100, the size 100 is missing!

m - Move to position in the file. The first byte has position 0.
Note: The real maximum move-size depends on the buffer value set in
XpkMasterPrefs program. Currently this match part are the first 2048
bytes.

The following numbers/strings are specified using $/hex values and must be
given as bytes (2 digits). You may repeat data behind these without
adding the command each time (f.e. v40v41 is equal to v4041).

v - Match specified BYTES at the current position in the buffer.
r - Exclude ranges - these ranges cannot be within the match part of the

file. You can once again specify numerous ranges, all will be compared
against the first 2048 bytes. For example, to figure out an plain text
file you might try r001F7F9F, so any file with chars within 00-1F and
7F-9F is passed through to the next preference entry.
You need to specify always 2 bytes (4 digits).

g - Range which may exists at the current position - means same as
v but gives a valid range instead. For example, g3039 will match
any numeral digit at the current position.
You need to specify always 2 bytes (4 digits).

s - Describes a string which has to be within the match part of the file,
but at any given position therein. For example, you could detect post-
script files using s25215053 ("%!PS").

examples:

XpkMaster 10 / 56

v464F524D describes an IFF file - matching FORM at the start
v464F524Dm8v494C424D describes an IFF ILBM file - matching FORM at the

start and ILBM at position 8
r00405BFF matches any file having only UPPER characters A-Z
g415A617A describes a file having an UPPER character at

first and a lower character at second position
v000003F3l6401 Executable file with size up to 25KB
v000003F3h6400l19001 Executable file with size between 25KB and 100KB
v000003F3h19000 Executable file with size greater than 100KB
v50503230|v50583230 PowerPacker files: Header is PP20 or PX20

Example File Types:

Files marked with NoPack are already crunched.

Type NoPack File Pattern

DMS Archive (DMS) * v444D5321
Executable (EXE) v000003F3
GIF Picture (GIF) * v474946
HotHelpHeader (HHH) m6v486F7448656C70486561646572
HotHelpText (HHT) * m6v486F7448656C7054657874
Icon File (INFO) vE3100001
ILBM Picture (IFF ILBM) v464F524Dm8v494C424D
Intellifont (IOF) v00440001m10v0014FFFF
JPEG Picture (JFIF) * vFFD8
MED Module (MMD) v4D4D44g3039
LhA Archive (-lh?-) * m2v2D6C68m6v2D
LZX Archive (LZX) * v4C5A58
PNG Picture (PNG) * v89504E470D0A1A0A
PT 32 Module (PT MOD 32) m438v4D2E4B2E
PT Packed Song (PT SONG) * v5041434B
Sound File (IFF 8SVX) v464F524Dm8v38535658
Startrek. Mod. (ST MOD) m438v464C54g3039
WordWorth Text (IFF WOWO) v464F524Dm8v574F574F
XPK file (XPKF) * v58504B46
Zip Archive (PK) * v504B0304
Other IFF (IFF) v464F524D

1.11 xfd support

Starting with version 4.19 of xpkmaster.library, it is posible to ←↩
decrunch

files, which are not in XPKF file format (not crunched with XPK).

XPK uses the shared xfdmaster.library to decrunch these files. This library
can be found in Aminet (util/pack/xfd???.lha). You need at least version
V38 of this library.

To enable that feature you need a program, which allows this by default or
you use

preferences
system to turn it on. By default the XFD support is

turned off.

XpkMaster 11 / 56

Not all xfdmaster file types are supported. XPK can decrunch only types,
which support calculation of uncrunched file size before uncrunching.

Version 38.2 of XFD allows to decrunch ProPack (RNC), StoneCracker,
CrunchMania, Imploder and PowerPacker data.

1.12 XPK - A STANDARD FOR DATA COMPRESSION

MOTIVATION

* Many programs that should offer data compression (e.g. HD backup
utilities) do not.

* Many programs that offer data compression use old, slow, inefficient or
inappropriate algorithm.

* All programs that offer data compression offer just one algorithm, you
are stuck with that one.

* Many good packers are not used by any application program and have no
good user interface.

* The installation of most packers requires AmigaShell knowledge (f.e.
putting LhA in the path so that other programs can find it)

* The decompression of all files packed with existing packers requires
knowledge about the packer used for compression.

* Many compression programs can not deal with files that are larger than
available memory.

* The existing compression programs are either slow or have a low
compression factor.

* There is no way to support upcoming hardware compression cards in already
existing applications yet.

* For none of the current compression programs exists a real decompressing
file handler that uses no dirty tricks to decompress files on the fly.

The solution to all these problems is XPK.

OVERVIEW

The XPK standard is to data compression what xpr is to file transmission.
It consists of three layers:
Level 2: The application/XPK interface for archives
Level 1: The application/XPK interface for files
Level 0: The XPK/packer interface
In addition, there is an optional standard XPK file format.

All parts of the XPK standard are implemented in shared libraries. There
is one master library for archive level access, one master library for file
level access, and one library for each compression algorithm.

level 2 xpkarchive.library
| |
V |

level 1 xpkmaster.library |
| | | V

level 0 type 3 | | | xarZOO
| | V

type 2 | | xexXPWP
V V

XpkMaster 12 / 56

type 1 xpkNUKE xpkENCO

LEVEL 0 LIBRARIES

All level 0 libraries offer the same functions. They are very small.
Typical calls are: "Tell me what you can", "Compress this chunk of memory
to another chunk of memory", and "Decompress this chunk of memory to
another chunk of memory". These libs are very limited, their functionality
is expanded by xpkmaster.library. No one would want to talk to a sub
library directly.

THE LEVEL 1 LIBRARY

Offers functions like "Compress this file to that chunk of memory using
that algorithm". All combinations permitted: Mem to mem, file to file, mem
to file, decompression and compression. Asynchronous packing possible. Very
convenient tag based caller interface. Determines automatically out which
sub library to use for decompression. Returns detailed error messages.

THE LEVEL 2 LIBRARY

Offers archiving functions like "add this file to that archive" or "show
me the contents of that archive".

OVERRIDING

It is planned, that libraries of a lower level can offer higher level
functions. They should be able to override the automatic functionality
expansion by the higher level library. xpkmaster.library, for example,
enforces the use of the XPK standard file format. It should be possible to
override this by a sub library. Therefore an new library interface will be
created, the xex libraries.

XPK also supports to decrunch alien data cruncher formats by use of the

xfdmaster.library
. But not all of xfdmaster’s file types are supported.

XPK can decrunch only types, which support calculation of uncrunched file
size before uncrunching.

THE XPK FILE FORMAT

Offers checksums, chunks (important when Seek()s on a compressed file
become necessary) and automatic handling by the xpkmaster.library. This
means that any new packer that can only pack mem to mem has its own file
format immediately. And most important: The name of the packer library is
contained in the file. Therefore, copying a new sub library to LIBS: is
all you have to do to install a new packer (easily done in installation
scripts); xpkmaster.library recognizes the new file type immediately. No
changes to xpkmaster.library or the application programs necessary. In
case the XPK file format is not used, the introduction of a new packer
requires a change the xpkmaster.library.

TYPICAL APPLICATIONS

A few examples for applications that could use XPK:

* A GadTools based archiver interface that can deal with all archivers

XpkMaster 13 / 56

* A CLI based file compressor/decompressor [xPack, xPK, xUp]

* A hard disk backup utility that stores compressed data [Diavolo and
others]

* A tool to write compressed images of devices to files [PackDev]

* A ’more’ program with automatic decompression [Most, MuchMore]

* A DTP program that stores its fonts in compressed format

* A network protocol with built in data compression for slow connections

* A hypertext utility that allows all data to be compressed

* A file handler that overlays an existing filesystem and uncompresses any
file while loading [XFH, PackDisk, Diskexpander (EPU)]

...plus many more we do not even need to think about yet.

CONCLUSION

XPK would increase the usefulness and flexibility of both application and
compression programs while improving their user friendliness at the same
time. The best way to establish this standard would have been to distribute
it on the workbench disk that came with every Amiga.

1.13 gnu-license

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that

XpkMaster 14 / 56

you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
author’s reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and

XpkMaster 15 / 56

distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licenses extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange;
or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

XpkMaster 16 / 56

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipient’s exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent

XpkMaster 17 / 56

license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

XpkMaster 18 / 56

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
’show w’. This is free software, and you are welcome to redistribute it
under certain conditions; type ’show c’ for details.

XpkMaster 19 / 56

The hypothetical commands ’show w’ and ’show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than ’show w’ and ’show c’; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

1.14 Documentation of the included sub libraries

CBR0
Yet another CmpByteRun0 algorithm compressor

DLTA
A trivial delta preprocessor

DUKE
A

NUKE
variant tuned for sampled sound

FAST
A fast LZRW based compression algorithm

FEAL
A Fast Encryprion ALgorithm

HFMN
A fast packing & unpacking dynamic huffman

HUFF
A dynamic huffman cruncher/decruncher

IDEA
ABPs IDEA implementation for XPK

IMPL
A LZ77 variant supporting various compression modes

MASH

XpkMaster 20 / 56

Another LZRW based compression algorithm

NONE
A dummy packer doing no compression

NUKE
A LZ77 variant with fast decompression

RAKE
A cruncher of the LZ77 family

SHRI
LZARI variant

SMPL
A dynamic huffman with delta precoding

SQSH
A LZ based cruncher with special algorithms for 8 bit sample ←↩

data

Use
xBench
for comparission between packers.

Legal issues:
These libraries may be freely distributed, as long as they are kept in
their original, complete, and unmodified form. It may not be distributed
by itself or in a commercial package of any kind without a written
permission.

These libraries are distributed in the hope that they will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

Most of them you can redistribute and/or modify under the terms of the

GNU General Public License
.

1.15 cbr0

Copyright 1992 Bilbo the first of Hypenosis

xpkCBR0.library is a standard XPK sublibrary implementing the very simple
cmp byte run 0 compression algorithm. The same algorithm is used on
compressed IFF-ILBM files. It is well known that this algorithm is only
efficient on data containing repeating equal bytes. This means that ASCII
files or (not compressed) picture files will be compressed well, but
executable files, sound data files, encrypted files (or other white noise
data) will be compressed only approx. 3%.

xpkCBR0.library is of course:

· written 100% in 68000 assembler using DevPac V3.02,

XpkMaster 21 / 56

· reentrant,
· pc-relative (except for resident structure used by system for injection),
· some bytes shorter than

U.D.Müller’s
RLEN,

· 2.9 times faster on compression, 3.6 times faster on decompression
compared to RLEN both used on file AmigaVision

· written by Bilbo the first of Hypenosis (this fact should convince you)

Version History
1.0 First public release.
No known bugs.

1.16 dlta

FEATURES
-good when crunching modules/sounds in combination with a cruncher
-written in fast optimized assembly (joh mei)

DOCUMENTATION
The DELTA enciphering routines of xpkDLTA were developed to help
XPK-crunchers crunching SOUNDS and MODULES.

In this version xpkDLTA supports BYTE-Delta encoding. This is the most
efficient encoding algorithm in combination with samples. WORD-Delta and
LONG-Delta may follow if the first 16-BIT (32-BIT!?) samples pass my way
or if you ask me kindly.

Example:
8SVX-Sample, Music mixed with talking

Uncrunched: 1016484 byte 8SVX-Sample

Imploded: 789824 byte (77.7% left) IMPL.100ed 8SVX

Deltaed+Imploded: 628076 byte (61.7% left) DELTA+IMPL.100ed 8SVX

HOW IT WORKS

xpkDLTA takes a byte and looks what the difference is between this
byte and its successor. It stores these differences. That is all!

Example:

|DATA |DELTA
|-------+-----
|6 |+6 (6-0) ;Start-Value => precedessor=NULL
|7 |+1 (7-6)
|3 |-4 (3-7)
|4 |+1 (4-3)
|10 |+6 (10-4)

FUNCTIONS: xpkDLTA supports all standard XPK sublibrary functions.

CONTACT

XpkMaster 22 / 56

If you want an update, enclose enough DM (Deutsche Mark) for disk, stamps,
envelope etc.

Never forget to mention
-what of my programs you are using
-which version
-where you got it from

Fanpost, donations, suggestions, ideas, flames & comments are welcome.

Get the authors address (Stephan Fuhrmann).

1.17 duke

DUKE is a hacked version of
NUKE
combining the effects of

DLTA
and

NUKE
.

Its compression performance and ratio probably is not good enough, we
still need a good lossless sound and/or module packer.

1.18 fast

xpkFAST is an XPK compression sublibrary whose main purpose is to ←↩
be

fast. The most interesting part of FAST is its speedy compressor, which
makes it predestined for applications which compress about as often as they
decompress. Good examples are: backup systems which make use of XPK to
support compressed backups or compressing filesystems.

FAST consists of three parts, two compressors and a common decompressor.
You can choose between the two compressors by using FAST.0 up to FAST.79
for the ‘‘speedy’’ compressor and FAST.80 up to FAST.100 for the
‘‘crawling’’ compressor, which is still faster than

NUKE
. The default mode

is FAST.50 which selects the ‘‘speedy’’ compressor.

Algorithm

FAST is a member of the LZ77 family of datacompressors. Other popular
members of the LZ77 family are: xpkNUKE, PowerPacker, Imploder (xpkIMPL)
and some parts of lha, gzip, zip, zoo, freeze, arj, uc2, ha, ain, ...

The common thing about all LZ77 compressors is that they store the data
as sequences of <copy>- and <quote>-items. FAST uses one ‘control-bit’ to
distinguish between a <copy>- and a <quote>-item. A <quote>-item simply

XpkMaster 23 / 56

consists of one byte which has to be placed into the outputstream
uninterpreted. Each <copy>-item consists of 12 bit <distance>- and 4 bit
<length>-information. <distance> encodes where to copy _from_. The 4095
useful possibilities are 1..4095(*) bytes back in the outputstream.
<length> encodes _how_many_ bytes to copy. Possible <length>s range from 3
to 18, which are encoded as 18-<length>.

The input: aaaaadadada compresses to: Q(a) C(1,4) Q(d) C(2,5). Where
Q(char) is a <quote>-item and means write a single character ’char’ to the
output and the <copy>-item C(dist,len) means copy ’len’ bytes, which can be
found ’dist’ bytes back in the output, to the output.

FAST uses two datastreams. That is, the compressed data consists of two
parts, the wordstream and the bytestream. The first compressor which used
this technique was xpkNUKE. The bytestream starts at the beginning of the
compressed data and the wordstream is stored in reverse order beginning at
the end of the compressed data. Thus the compressed data does look like
this: literalsSSDDRROOWW where small characters denote literal bytes and
two capital characters are a word from the wordstream.

If you want to discover more of the internal workings of xpkFAST just:
‘‘Use the force! Read the source!’’ The best place to start your tour
through the source is the decompressor in decompress.s since the
decompressor is much simpler than the compressor.

(*) I could have been using distances of 1..4096, but doing so would
have added one instruction to the short and thus fast decompressor.

History:

In April 1991, Ross Williams published his LZRW1 algorithm by presenting it
at the data compression conference.

The LZRW1-A algorithm is a direct descendant of the LZRW1 algorithm,
improving it a little in both speed and compression.

FAST started as a ‘‘port’’ of Ross Williams’ LZRW1-A C-Implementation
and his 68000-version of the decompressor to the Amiga as XPK sublibrary.
While porting I made some small changes improving the decompression speed.
I removed the feature of handling the case of noncompressable input,
because the xpkmaster.library takes care of that. After that, I found some
cute changes which dramatically improved the speed of the decompressor.
These were in detail:

* split the compressed data into a word- and a bytestream, removing many
double byte accesses with a shift in between.

* changed the copy loop from a move-dbra loop to 18 moves in a row.

* changed the used range from 1..4096 to 0..4095 eliminating one
instruction in the decompression loop.

* removed all bra.s from the inner decompression loop.

* totally rewrote the compressor in 68000 assembler.
+ changed the hashfunction to NOT use mul or div.
+ produces the ‘‘new’’ format needed by the new decompressor.
+ removed nearly all of the loop control tests by having

a fast and a safe loop.
+ small code fits into the instructioncache of a 68030.

XpkMaster 24 / 56

Urban Dominik Müller
helped me to improve the speed of the compressor

even further, contributing several ideas and some code. For details refer
to the source.

V1.00: release date: 29-Aug-1993
V1.01: unreleased. [testversion with four different compressors.]
V1.02: release date: 12-Sep-1993

* quadrupled the HASHSIZE for FAST.80 .. FAST.100 which allowed the
removal of 2 now unneeded COMPARE_BYTEs to speed up compress_slow.

V1.03: release date: 17-Oct-1993

* major code juggling in compress2.s to squeeze some cycles.

* removed the need for a ctrlCtr in compress2.s in favour of doing
addx.w ctrl,ctrl bcs.s ctrlFull and ctrl initialized to #1
instead of rol.w #1,ctrl dbra ctrlCnt,notFull and ctrl initialized
to #$0000FFFF

V1.04: release date: 06-Feb-1994

* fixed a buglette reported by Detlef Riekenberg <eule@netgate.fido.de>
V1.05: release date: 01-May-1994

* removed MEMF_CLEAR from call to AllocMem() of the hashtable which
is initialised anyway. reported by Simone Avogadro

* cosmetic changes to compress2.s
V1.06: release date: 28-Jul-1994

* tuned the copying of the wordstream in compress.s and compress2.s

* rewrote bitreading in the decompressor

"Thank you"s must go to:
Jörg Bublath <bublath@forwiss.uni-passau.de>

for never getting tired of assembling and testing new versions.

Urban Dominik Müller
for providing ideas and code to improve FAST, XPK itself

and doing various xBenchmarks on his A4000 and A3000.
Ralph Schmidt <laire@uni-paderborn.de>

for providing BAsm and BDebug [In my opinion the best
development environment for assembler programs on the Amiga.]
and doing some batch-xBenchmarks on his A4000.

Michael van Elst <mlelstv@specklec.mpifr-bonn.mpg.de>
for being so couraged to run one of the first alpha versions
of the crawling mode on his A3000 during a large filetransfer
--- and crash.

Markus Illenseer <markus@TechFak.Uni-Bielefeld.DE>
for enabling me the remote-use [and once -guru] of his A2000+68030
and temporarily ripping all the 16Bit FAST RAM out for the sake
of acurate xBenchmarks.

Tobias Walter <walter@jazz.hall.sub.org>
for letting me use his A1000 to test 11 totaly different and
incompatible versions of FAST in one evening.

Matthias Meixner
for doing some xBenchmarks when Jörg was ‘unavailable’.

Markus Armbruster <armbru@pond.sub.org>
for assisting me in the two weeks search for the
nonexistent timing-indeterministency-bug.

XpkMaster 25 / 56

Contact Addresses:

Ross Williams (ross@spam.ua.oz.au)

Christian von Roques

Urban Dominik Müller

1.19 feal

FEAL is an XPK encryption sublibrary which implements the FEAL-N ←↩
data

encryption algorithm in CBC1 mode. FEAL-N has been developed at the NTT
Communications and Informnation Processing Labs. in 1988.

FEAL-N is a blockchifre, which encryptes a datablock of 64Bit to a 64Bit
codeblock using a 64Bit external key. FEAL mainly consists of a loop which
is taken N times. The loopbody encodes half of the data using a 16Bit
internal key and swaps the encoded half with the other one. The 64Bit
external key is expanded to N * 16Bit internal keys.

FEAL was designed to be a replacement of DES. DES can be easy made fast
using special purpose hardware, but is a pain to be implemented in software
using conventional hardware. Since FEAL only uses 8Bit add, rol and eor
operations, it is designed to be implemented in software.

Btw.: FEAL is one of the few algorithms which is easier to implement
using the 80x86 processorarchitecture than the 680x0 because of the 80x86s
splitable registers.

Safety

Rounds Safety (? ;-)
------ -------------

4 unsafe, broken (Murphy 1990)

8 unbreakable for ‘‘normal’’ people

16 good Cryptoanalysists can decypher this with less
(default) then testing all possible keys. But it can be valued
as ‘‘safe’’ anyway.

32 There is no known better method of breaking this
than testing all 2^64 possible keys.

64 Only paranoids will use this.
(But real paranoiac do not use FEAL)

History of FEAL

1985 first proposal to ISO (FEAL-1, FEAL-1’, FEAL-2)
1987 FEAL-4 presented on Eurocrypt.

XpkMaster 26 / 56

1987 attack on FEAL-4 by B. den Boer. (Crypto 1987)
=> doubled the number of rounds: FEAL-8
1988 FEAL-N proposed (N even >=4)
1988 FEAL-NX proposed (N even >=4)
different method to calculate partial keys
=> 128Bit key instead of 64Bit

published attacks

o B. den Boer (1987: FEAL-4; 100-10000 choosen plaintexts)
o Murphy (1990: FEAL-4; 4 choosen plaintext)
o Gilbert Chasse (1990: FEAL-8; statistically)
o Bilham, Shamir (1990: FEAL-4. FEAL-8, FEAL-N, FEAL-NX)

differencial Cryptoanalysis:
=> for up to 31 rounds better than testing all keys.

o Gilbert (1991: FEAL-4, FEAL-6; 20000 knowm plaintexts)

published versions of FEAL

name rounds key internal key
---- ------ --- ------------
FEAL-1 4 64 4*16+2*32

FEAL-2 6 128 6*16+2*32

FEAL-1’
FEAL-1.00 4 64 4*16+2*64
FEAL-4

FEAL-2.00
FEAL-8 8 64 8*16+2*64

FEAL-N N 64 N*16+2*64

FEAL-NX N 128 N*16+2*64

Version History of xpkFEAL

1.0 First public release.

1.02 Fixed a stupid typo, which did not prevent the user from
encrypting with an uneven number of rounds.

1.03 Previous versions filled the last block with junk, now
the last encrypted byte is length&7.
Minor speedups in the assembler part.

Future Plans

Support the other 3 standard modes. (ECB, CFB and OFB)

XpkMaster 27 / 56

Improve the speed.

Contact Address

Christian von Roques
+--+

| Questions regarding FEAL-N can be referred to: |
| Mr. Shoji Miyaguchi |
| Communications and Information Processing Labs., NTT |
| 1-2356, Take, Yokosuka-shi, 238-03, JAPAN |
+--+

1.20 hfmn

This XPK sub library basically uses the same algorithm (dynamic ←↩
huffman or

classic huffman) as found in the xpkHUFF.library. For more detailed
information about the huffman algorithm, take a look into HUFF.doc from
M.Zimmermann -- and skip the part that huffman compression & decompression
is pretty slow! In difference to HUFF, HFMN is FAST on compression and
decompression and produces a slightly better output. Although the basic
algorithm is the same, it is entirely different implemented, therefore
HFMN will not depack HUFF and HUFF not HFMN!

HFMN needs for private buffers (no xpkmaster.library buffers)

· 7.5 Kbyte packing memory
· 5 KByte unpacking memory

How does it work?

· First, I use heapsort to create the huffman tree, which is most
responsible for packing speed. (heapsort is the second-best sort
algorithm and is based upon binary trees)

· Second, (for decompression) I generate an (almost) optimal unpack code
from the huffman tree.

· Third, I save the huffman tree recursivly. That is why I need max. 320
byte to save a complete huffman tree.

020+ Version

I have experimented with 020+ code and rewrote the most used routines. My
huffman-code-translation-routine :) is reduced from 50 to 16 instructions,
and achieves a noticable speedup. (hmm, I like bitfield instructions.:-)

.next move.b (a0)+,d2 ;incoming characters ($00-$ff)
move.l (a2,d2.w*4),d3 ;huffman code
move.b 3(a3,d2.w*4),d4 ;huffman codesize
bfins d3,(a1){d5:d4} ;store huffman code
add.l d4,d5 ;bitoffset + last codesize
dbra d7,.next

XpkMaster 28 / 56

For decompression, the 020+ code produces no improvements. But there were
still some small optimizations possible, so decompression speed is improved
too.

Version History

V 1.16 - first public version.
V 1.18 - 2 ways of decompression.
V 1.19 - bugfix: uncompressable data returns now XPKERR_EXPANSION

instead of XPKERR_SMALLOUTBUF.
V 1.20 - V 1.27 - some experimental versions with 020+ code.

V 1.28 - extra library with 020+ code for compression.
- improved 000+ decompression code.

V 1.29 - V 1.33 - some experimental version for the 1.34 bugfix.

V 1.34 - fixed a bug that i had added somewhere before 1.16.
it should have caused problems only under bad circumstances,
when the byte statistic was fibonacci like.
(in fact, the decompression routine could not handle
huffman codes longer than 16 bits, ups...)

Thanks to Nicolas Pomarede for his superdetailed bugreport.
(He analysed the code and told me exactly when and where it
goes wrong :-))

V 1.35 - fixed a bug in the 020+ compression routine.
(16 Bit overflow for number of bytes written to xsp_OutBuf
was not handled correctly)

Thanks to David Balazic for reporting this one.
V 1.36 - 1.35 bugfix was not 100% ok.

Contact Address

Martin Hauner

1.21 huff

The idea of a huffman crunch is as follows: often used bytes (ie 8 ←↩
bit

codes) get a shorter code than 8 bits, fi 5 bits. So everytime one of these
bytes occurs in the source file I save (in this example) 3 bits in the dest
file. To find out the optimum codes for each byte there is a simple method:
A tree is to be constructed so that the path from the root to each leaf
reflects the optimum (ie huffman) code. Unfortunately most computers (the
Amiga, too) are byte-oriented, which means a rather complex handling of
codes that are not a multiple of 8 bits. This results in pretty slow
compression & decompression. So this means that the xpkHUFF.library
probably will not be used for normal circumstances, but, as Dominik stated,
it may serve well as an example library.

There are three different huffman crunch algorithms known:

XpkMaster 29 / 56

· static compression/decompression
· dynamic compression/decompression
· adaptive compression/decompression

What are the differences?

The static huffman uses a fix table to represent each byte of the source.
This, of course, makes sense only, if the structure of the data to be
crunched is known. In this case (for instance crunching an english text) a
fix table of codes is embedded in the code. Crunching other data than what
the table was generated for will probably result in worse compression or
even expansion.

This is what a dynamic huffman is avoiding: it first creates a statistics
table reflecting the frequency every byte occurs with and generates a
special tree/table for this case, so the dynamic huffman does a good
compression for this special data.

But there is something that can be improved, anyway: imagine, there is a
data block which contains many ’a’s in its first part and many ’z’s in the
last part.... The dynamic huffman would represent the ’a’s and ’z’s with
short codes, of course. But it probably would be even better if the
crunch/decrunch tree would reflect the *current* data beeing processed
instead of the whole block, thus in resulting shorter codes for ’a’ and ’z’,
depending of the position in the data block. This is what an adaptive
huffman deals with: it creates the tree while crunching, without doing any
statistics or tree creation before crunching. It permanently updates its
internal huffman tree. Therefore it does not have to include the information
about the decrunch tree in the crunched data.

Final words about huffmans:
A stand-alone huffman will never achieve crunch results as fine as those
reached with most other crunchers, for these will not only regard the number
of occurances for each byte (as huffman does), but sequels of byte, too.
This means: If you create all permutations of a datablock, the huffman
crunched will always have the same length. Others will not, as they are
depending on the order of the crunched data, too.

Description

The library ’xpkHUFF.library’ implements a dynamic huffman crunch
algorithm, even though the adaptive might result in slightly better crunch
results. However, this is more complex to implement and I am using a maximum
buffer size of 64K, so this is a little bit like an adaptive huffman for
large files.

If I should have lots of spare time I will probably implement an adaptive
huffman crunch algorithm. This new library will be called xpkHUFF, too, and
new xpkHUFF libraries will always handle output generated by earlier
versions.

The xpkHUFF.library supports a totally unsafe (but a little bit better
than simple eor :-) encryption. Please note that crunch/decrunch speeds
decrease when encryption is used.

XpkMaster 30 / 56

Implementation

If you should see an errormessage saying output buffer too small while
crunching *and* encrypting, this means you tried to crunch and encrypt a
file that would crunched and encrypted be larger than the original file.
This should occur only with very small files (for I have a minimum file size
due to tables) or with files that have been crunched already and therefore
would expand during crunch.

A technical note: this could also happen, if the last chunk of a file to
be crunched/encrypted would be dimensioned too small by xpkmaster.library.

However, in this case you cannot encrypt the file. I know this could be
annoying and will think about a solution for this problem, but remember:
this encryption would not be safe, better if you used FEAL or IDEA for
secure encryption.

Last words ...

I tried hard to debug this library with range checking while writing
bytes on crunching, and so on, but as in every code larger than, say 10
lines :-), there will be bugs. I do not know any bugs in this version, but
if you should meet one, please let me know via email. As usually,
reproducable bugs are preferred. Please add your configuration, programs
running (best if you try without startup-sequence!), and, most important of
all, add the file you tried to crunch! Thank you.

Version History

; V 0.1 - 12-Jul-1992 : first version
; V x.yy - 18-Jul-1992 : first OK version
; V x.yy - 19-Jul-1992 : sped up decrunching
; V x.yy - 21-Jul-1992 : bug fixed in word/long decrunching: min pack
; chunk size now 3/5
; V x.yy - 21-Jul-1992 : replaced many subq/bxx with dbf (ie sped up
; crunching a little bit), bug fixed: there was
; a dbf counter wrong (one of my favorite 0/1
; problem bugs)
; V 0.50 - 29-Jul-1992 : added 68030+ cache optimized decrunch code
; V 0.51 - 01-Aug-1992 : byte decrunch improved, first code added,
; indicator byte for crunchmethod used added,
; 68030+ chache optimized code does not make
; sense any more, since byte decrunch fits to
; cache completely, now
; V 0.52 - 01-Aug-1992 : unsafe encryption supported
; V 0.53 - 03-Aug-1992 : slight improvements made to crunch code
; (+ 6K/s)
; V 0.54 - 03-Aug-1992 : inconsistence in expansion handling fixed
; V 0.55 - 03-Aug-1992 : bug fixed: expansion handling now considers
; table creation, too
; V 0.56 - 03-Aug-1992 : bug fixed: HUFF now can crunch files
; consisting of always the same byte (shame
; on me, termination criterium was wrong)
; V 0.57 - 03-Aug-1992 : Tree creation code partially rewritten

XpkMaster 31 / 56

; V 0.58 - 05-Aug-1992 : bug fixed: wrong termination criterium for
; expansion check (my favorite 0/1 problem)
; V 0.59 - 06-Aug-1992 : now decrypting in a special buffer, not using
; InBuf (this is read only, I was told) any more
; V 0.60 - 07-Aug-1992 : added extra memory required during
; packing/unpacking
; V 0.61 - 08-Aug-1992 : expansion check changed, renamed from
; xpkDHUF.library to xpkHUFF.library thus
; corresponding to the possibility of handling
; adaptive huffman codes later without having
; an inconsistence in the name
; V 0.62 - 10-Aug-1992 : Flag XPKIF_MODES removed (I do not have modes
; yet (but I have a mapping code :-=))

Contact Address:
Marc Zimmermann

1.22 idea

Patent

IDEA is registered as the international patent WO 91/18459
"Device for Converting a Digital Block and the Use thereof".
For commercial use of IDEA, one should contact

ASCOM TECH AG
Freiburgstrasse 370

CH-3018 Bern, Switzerland

Description

IDEA is an XPK packer sublibrary which implements a highly optimized form
of the IDEA encryption algorithm.

IDEA (International Data Encryption Algorithm) is a block cipher
developed by Xuejia Lai and Prof. Dr. J. L. Massey at the Swiss Federal
Institute of Technology. See patent for information on any commercial
use of this algorithm. Especially, this library is not only claimed by
the copyright of the author and the copyright of the author of the used
IDEA kernal routine, but by the copyright of the IDEA originators and
their patent, too.

This implementation of the algorithm was done by André Beck, Dept. of
Computer Science, Technical University of Dresden, Germany.

xpkIDEA.library gives a chunk based access to the most common encryption
methods, using the IDEA cipher as the encryption function. The IDEA cipher
is known to be somewhat slow. It performs 34 multiplications modulo 2^16+1
for every 64 bit data packet, so it must have limited performance on a
plain 68000 processor. This library uses the heavily hand optimized,
permuted, macrotized and partially unrolled 68000 assembler implementation
of IDEA by Colin Plumb. Therefore, the kernal IDEA routine and it is
macros are copyright by Colin Plumb.

XpkMaster 32 / 56

In difference to the most wide spread compressors distributed with XPK, one
should know something about IDEA before using it. First, IDEA is completely
no compressor, it only encrypts or decrypts data. A password must be
specified with first calls to "pack" or "unpack" a chunk. Furthermore, the
password given on encryption MUST restore the original chunk contents,
otherwise the password will be treated as incorrect. This is a tribute
to the XPK architecture and its safety, but has the disadvantage of
preventing you from doing things like a triple crypt, what means to first
encrypt a chunk with password 1, then decrypting it with password 2 and
last encrypting it with password 3, all three passwords different.

Encryption Methods

IDEA is a cipher used for encryption in this library, what means it is a
function taking one data block and an encryption key as input and
producing one data block as output. The purpose of this function is to
generate a very random result from normaly highly redundant input, in other
words to make White Noise of bits from a regular, low entropic bit stream.
The IDEA data blocks are sized 64 bits, where the key has 128 bits in its
unexpanded form (DES has a key of 56 bits). One now may use this function
in different ways. The simplest encryption is to take the input chunk block
by block, driving it through the IDEA function, and building the output
chunk from the result. This mode is called Electronic Code Book (ECB).
But an Code Book based encryption is not the state of the art, because it
is somewhat easy to crack (even ECB using IDEA is not easy to crack, only
a bit easier than the following modes). One can imagine, that including the
chunks contents (which is to be crypted) itself into the encryption will be
much safer. Consider a simple ECB to encrypt text, generated by the function

out_character = (in_character + 1) MODULO num_of_characters.

This is nothing other than incrementing every character, f.i. making A to B,
F to G and Z back to A. So the word FOOBAR will be crypted to GPPCBS, and
nobody will see what it is on the first visit. But there are also people
called Cryptologists, and cracking such codes is their job. Simple methods
of cracking are especially based on the probability of characters in
different languages. They know e is a very often found letter in indo
european languages, and if they find one character very often in the
crypted text, this one may be an e. If it is sure that it is an e, one can
insert it in the complete crypted text where the cracked character was.

The method to prevent such simple cracks is based on chaining the produced
output back into the crypt function with some delay.
Consider

out_character = ((in_character + last_out_char)+1) MODULO num_characters

with an initial last out character of ’C’.

FOOBAR gets JAQTVL using this code and nobody can see that an double O was
in the input. So it is more complicated to crack messages crypted with this
code, because one MUST start at the beginning of the text. It is also
possible to increase the number of ,,states of remember’’ we are using,
for instance by not using the last_out_char but the seventh_last_out_char
and using 7 different initial values for them.

XpkMaster 33 / 56

The method used above is very similar to a common encryption method called
Cipher Block Chaining (CBC) with one state of remember (CBC 1).

The difference to ECB in schematic view:

ECB electronic code book mode
y[i] = IDEA(z, x[i])
x[i] = IIDEA(z, y[i])

CBC cipher block chaining mode
y[i] = IDEA(z, x[i] ^ y[i-N])
x[i] = IIDEA(z, y[i]) ^ y[i-N]

with

x[i] is the input block number i
y[i] is the output block number i
z is the encryption key
N is the number of states of remember (at least one)
IDEA is the encryption function using the IDEA cipher
IIDEA is the corresponding decryption function
^ means the XOR of the operands (Bitwise Exclusive Or)

There are two additional modes often used with encryption. See the following
schematics:

CFB ciphertext feedback mode
y[i] = x[i] ^ IDEA(z, y[i-N])
x[i] = y[i] ^ IDEA(z, y[i-N])

OFB output feedback mode
h[i] = IDEA(z, h[i-N])
y[i] = x[i] ^ h[i]
x[i] = y[i] ^ h[i]

As you see, all the chaining modes have additional parameters determining the
result of the crypt. Not only the key determines the resulting chunk for a
special input chunk, but also the number of states of remember used by the
mode and the values used to initialize the states (in CBC 1 coding block
#0, you need block #[i-1], but you have no block #-1, so you have to give
some initial value for it). For CBC 8 you have to give 8 initailizers,
and so on.

The xpkIDEA implementation uses the following XPK modes for different
encryption methods:

0.. 25 ECB
26.. 50 CFB
51.. 75 OFB
76..100 CBC

As you see, the modes were ordered to somehow match the scheme given by the
most XPK packers, with 0..100 mapped to increasing efficiency and decreasing
speed. There are neither big differences in speed nor in efficiency of the
used modes, and the mapping used is easy to remember. Especially one gets
very simple from the mode used to the encr. method and state number by
subsequent subtractions of 25 from the mode:

XpkMaster 34 / 56

IDEA.79 -> 79 - (3*25) = 4 , so mode 3 (CBC) with 4 states applies.

The default method used when no mode is explicitely given is CBC1,
i.e. the mode IDEA.76

The presented speed (in KByte/second) is not very exact. This is mainly
caused by the varying cycle count of the 68000’s mul instruction. The
encryption will be faster with the all-zero-key and slower with the
all-ones-key. Try around with key values
#0
#5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a
#ffffffffffffffffffffffffffffffff

to see the differences.

Not only IDEA.100 is a very safe encryption, also IDEA.75 and IDEA.50 may
be good for safe results. They are modes with 25 states, so one may give
25 (!) different initializers to the password, which must all be known to
get this decrypted again. The code is developed in a way that no speed
loss will occure even using much states. At the other hand, a open connection
with this sublibrary for packing or unpacking forces the allocation of around
600 bytes of memory. If you are low on memory, the library may return a
matching error condition.

The Password

You may ask now, how to give different initializers to the encryption
modes which use them ? Therefore, the password parsing routine within this
library is more complicated than normal ones. An IDEA password consists
of the key value and a optional set of initializers, both specified either
as a plain ascii string to be hashed or as the explicite hexadecimal value.

The syntax is as follows:

<password> ::= <keyspec>[<initializer>]*.
<keyspec> ::= <valuespec>.
<initializer> ::= ":"<valuespec>.
<valuespec> ::= [<charstring>|<hexstring>].
<charstring> ::= ["!".."~"]*.
<hexstring> ::= "#"["0".."9"|"a".."f"|"A".."F"]*.

so possible passwords are f.i.:
password
password:heut:ist:montag
#738494ad53ae2c1b736218ac12abaacc:nix:hexa:oder:doch:#4455663311223311
: <-- this results in the all-zero-key.
passwd::::ini4 <-- initializers 1..3 are zero

Its useless to specify any initializers with ECB
Its useless to specify more then N initializers for mode [CBC|CFB|OFB] N
The maximum number of initializers is 25
charstrings may have any number of characters
hexvalues for keyspec have to fit in an OCTAWORD. (16 Byte)
hexvalues for initializers must fit in a QUADWORD. (8 Byte)
unspecified values (key/initializers) are zero.

XpkMaster 35 / 56

If you do not initialize a value, it will be zero. Any syntactic or
semantic error in the password specification will raise the error
XPKERR_WRONGPW. The ’#’ character is used to introduce hex values because
many shells would missinterpret $ even if it appears in doublequotes.
The hash routine currently used in this password parser is not very strong.
String passwords should be at least 12 characters long to give a nice
key.

Technical Info

This lib is completely written in assembler using a68k and the 1.3 includes.
It was developed within around 10 hours of work distributed over more than
14 days (better to say nights).
The author could only test it on an 1 Meg chip no fast 7.14MHz 68000 A500
under Kickstart 1.3. The source is now around 30000 bytes and may contain
some bogus. If you find any bugs report them to me via the email address
given below.
Make sure the output buffer is at least the size of the input buffer plus
XPK_MARGIN, even if this is on decompression more then the original chunk
size. This library relies on this behavior, which is correctly done by
xpkmaster.

As already stated in the section Disclaimer, the author gives no warranties
for the proper function of this software. Additional, he cannot give any
guarantee that IDEA itself is a useful encryption standard. It SEEMS to be
very strong, but it is still under analyzation by some organizations like
the NSA and similars. If you are interested in the theoretics of this
algorithm, ask me for some hints.

Contact Address:
See section Patent for information on how to reach the authors of the IDEA
cipher.

If you want to get in contact with the author of the fast idea routine used
within this library, contact Mr. Colin Plumb at: colin@eecg.toronto.edu

1.23 impl

This XPK sub-library uses basically the same algorithm as found in ←↩
the

Imploder, but without the specifics needed for compressing self-contained
executables.

A quote from the Imploder 4.0 technical manual says it all :-)

IMPL does LZ77 like compression with a, per mode, static Huffman like
coding step on the various parts of the skip, offset and length tuples.
Due to the efficient encoding, a tuple can require less than 12 bits, and
thus strings of 2 bytes length and up are encodable with a decent gain
(given small Huffman patterns corresponding to likely circumstances).

The default compression mode is 100 which means that the actual compression
mode used depends on the chunksize. The default chunksize is 64K. In

XpkMaster 36 / 56

general, this mode produces the best compression ratio, although the mode
range 76..98 (1.00*max) will sometimes produce better results.

The current version of xpkIMPL.library will, by default, react to a BREAK
signal (CTRL-C) while compressing. Compressing a chunk (especially on
unaccelerated Amiga’s) can take quite a bit time, so allowing the user to
break-off compression is useful. For now, it is not possible to turn this
feature off!

Version History:

0.01 Well known Imploder compression algorithm now included in a XPK
sublibrary.

0.19 Improved robustness.
1.00 Much needed documentation added.

Contact Address:
Peter Struijk

1.24 mash

xpkMASH is an XPK compression sublibrary whose main purpose is to
decrunch fast and have an excellent crunch factor. The sublib is using
LZ77 compression and a special method to write matches... MASH now
normally uses 256KB for its tables, but reduces the size of the
hashtable if memory is scarce. (it could crunch even with 64KB+4KB)
Compressing with a small hashtable naturally is very very slow.
Default chunk size is 64KB. The compressor uses lazy match evaluation
which slowed it down quite a bit.

This sublibrary has several modes:

Mode Strings to be searched
------ ------------------------

0-09 1 ;high speed - but low CF
10-19 2
20-29 4
30-39 8 ;good for most executables
40-49 16
50-59 32
60-69 64
70-79 128 ;this should be used for text files
80-89 256
90-99 512

100 1024 ;the best, the slowest

The second column is showing, how many matches should be compared
- the more searched strings - the better results you will get.
formula is simple 2^(MODE/10).
MODE 70 is now runing as fast as NUKE on my A1200
and if you want to use some higher modes - you will get result better
for only a few bytes, but slowdown will be very noticeable.
(But for crunching I am always using the best mode anyway :-))

!!! The source for this version is not released !!!

XpkMaster 37 / 56

if you want to see it anyway, drop me an e-mail and I will send you it.

I still want to do some improvements. Probably even change format of stored
data to reach better decrunch speed and possibly use some more MC68020
instructions in this case. You do not have to worry, this library will also
decrunch old format. Send me an e-mail what you would like to see in newer
version of this library. But this newer format will always need
256KB of memory so it could be a problem for some people.
If you think this library is worth some money, you could send them
It will speed up development :-)

"Thank you"s must go to:

Urban Dominik Müller
for XPK standart. (Try to respond to my e-mails sometimes :-))

Christian von Roques
for correcting some parts of this document file,

and also for releasing his source, so I could use some parts
of it in my library (XPK interface).

Karsten Dageförde
for making benchmarks and other cooperation

more people should be in this list - authors of Zip, Lha, Arj, ...
but I would have to make some deep research for them.

History
0.5 Many errors, the biggest problem was bad writing of bits string.
0.7 Most errors have been debuged
0.8 Last byte has not been saved
0.9 On the first look, normaly working version of the sublibrary with

fixed hash table - size 64KB
1.0 The big improvement in memory allocating;

memory is allocated before each chunk compression and deallocated
after this chunk is compressed (usefull if you have installed
statram.device)

1.01 Hash size was increased from 64KB to 128KB (16 bits)
1.05 Hash is allocated dynamicaly - when is large memory free - large hash

is used. Starting with 128KB, 64KB, 32KB, ,512 bytes
1.15 Seems to work perfectly for me

First public release:
1.16 I suppose last bug has been removed - value of register D4

was not saved on return. Also most long word instruction have
been rewritten to word oriented instructions (useful for MC68000)

1.26 Several speed up improvements - decompression goes about 50 kB faster

Unreleased
1.30 New crunch mode - uses 256KB of memory for its buffers
1.40 Removed checking of two bytes in match

it is not needed when two-byte hash is used
1.53 Removed zero length write when chunk is uncrunchable

Diavolo is a little bit odd and uses this value for DIVS

XpkMaster 38 / 56

even when its not valid -> caused GURU
1.61 Removed bsr call from scanning routine.

Released
1.77 Prepared for release - there are still many things to improve,

but it already has a very good speed. So I am releasing this
version.

1.98 Well many new checks have been added to prevent a to deep scan
when better match cannot be found. Even a little bit better
alghorithm was used for lazy_eval -> better CF.

Contact Address:
Zdenek Kabelac

1.25 none

NONE is only a dummy packer, which was an programming example in the
first distribution. It only copies the data to the resulting file.
(With 52 or more bytes header)

It may be useful with xpkarchive.library, because it gives the option of
no crunching like in LhA.

1.26 nuke

NUKE is an XPK packer sublibrary which implements a highly ←↩
optimized form

of the popular LZ77 compression algorithm. This is essentially the same
algorithm used in PowerPacker, Imploder and (among other algorithms) in
the LZH/LHA packers.

Most applications of packers mean packing once and unpacking many times.
One example is a PD program that gets distributed around the world, or a
compressed program on the hard disk the needs to be decompressed when
loaded. NUKE tries to~be fast at decompression, thus restricts itself from
applying fancy algorithms (Huffman, Ari-coding). In order to achieve
reasonable compression factors anyway, it scans a very long range (more
than 24K) for identical byte sequences and if it finds any, it outputs
offset and length instead of the bytes themselves.

Of course scanning such a long range for duplicates is quite a CPU
intensive process. I have tried to make it as fast as possible, and with
around 35K/sec (A3000) I would say I have come close to the best that can be
done with this approach. There is a drawback, though. The compression must
use large hashing tables to reach this speed. I have made sure that NUKE is
still usable on a plain 512K Amiga, but you will not be able to run many
things besides NUKE while you are packing. There is, by the way, no increase
in mem needs with increasing file size.

Version History:
1.0 First public release.
1.2 Does compress slower, but a bit better.

XpkMaster 39 / 56

Decompression is faster than V1.0.
1.3 Fixed excessively long 2 byte matches [there were files, on which

NUKE was not bijective!]
1.4 added new startup header
1.5 recompiled to fix error with DiskExpander
1.6 better library start header
1.7 fixed low-mem error

Contact Addresses:
Urban Dominik Müller
,
Christian von Roques

1.27 rake

RAKE is an XPK packer sublibrary which implements a highly ←↩
optimized form

of the popular LZ77 compression algorithm. It uses static huffman coding
for the ’len’ and a three-step coding for the ’offset’ information. The
major feature of this packer is the highly optimized algorithm for tracking
down redundant data.

RAKE supports four modes at compression (see below).
- Scanner & Coder together fit in 68020 instruction cache
- Hashbuffer-size will be reduced downto 0.5Kb, if memory is short

History

Sep-9-94 V1.0 First public release (68000,68020)
[...]

Jul-1-95 V1.6 - Scanning algorithm improved.
Sep-6-95 V1.7 - 68020 version now checks if there is an appropriate

processor (68020 or better)

Contact Addresses:
Karsten Dageförde

1.28 shri

SHRI is an XPK packer sublibrary which implements a compressor, ←↩
highly

optimized for compression rate. It uses offset/len encoding with
adaptive arithmetic aftercoding for best compression results. Its
compression rate is better than that of most other packers, e.g. lha,
zoo or powerpacker.

It supports 7 modes, which differ in the size of the dictionary:

Modes Dictionarysize
------ --------------
0- 14 1k

XpkMaster 40 / 56

15- 28 2k
29- 42 4k
43- 56 8k
57- 70 16k
71- 84 32k
85-100 64k

A larger dictionarysize gives a higher compression rate and faster
decompression, but slows down compression.

This library is not meant to be used for online-compression as it is used
in e.g. XFH. It is meant to be used for achieving highest compression-rates.
These can be useful, when transferring files via modem, for a backup to a
slow medium (floppy disks) when you have a fast computer or for creating
archives with the xpkarchive.library.

The decompressionspeed of this version is about 82% higher than that of
version 1.0. The compression is about 5% faster.

History

V0.2 First public Release
V0.3 XpksPackChunk retured XPKERR_CORRUPT instead of XPKERR_EXPANSION

- Bug fixed in V0.3
V0.4 SHRI could not decompress files, which where partly compressable

- Bug fixed in V0.4
V1.0 New Version with improved compression- and decompressionspeed
V2.1 Improved decompressionspeed, all relevant parts of the decompressor

are now written in assembler.
V2.2 Removed important bug in the decompression-part, that produced errors

with chunksizes above 32767 bytes

Contact Address:
Matthias Meixner

1.29 smpl

SMPL is a XPK sublibrary implementing dynamic huffman coding over
variations of datastream. If that sound too complicated, I suggest you
read docs for

DLTA
and

HUFF
, in that order. In fact, DLTA was made to be

used as preprocessor for other XPK packers.

Then why did I code SMPL? Think this: how many music programs you know that
support XPK? Yes, I know I can always use XFH so I can pack all my
data, but if I have first fed data thru DLTA and then another compressor,
then XFH only decompresses the latter. So I still need XPK supporting
program to pack my samples efficiently.

SMPL overcomes this by including
DLTA
coding into same library. I chose

XpkMaster 41 / 56

to use huffman coding for actual packing as it seemed to give best average
compression. I snatched the huffman code from

xpkHUFF.library
and

tweaked it a bit for faster (de)compression.

Some samples were packed better with simple
HUFF
without delta precoding.

If I find a way to determine output size from frequency table (ie. without
building huffman tree) I will add non-delta packing to SMPL.

I tested
DLTA
+SMPL mainly to see if there would be any use for recursive

delta, but less than 100K of all data packed marginally better when fed
thru double delta.

Three percent difference between SMPL and
DLTA
+
HUFF
comes from two

things:
1) xpkmaster.library adds some bytes to DLTA coded files
2) I store huffman tree in more compact way

Version History: 1.00 First public release.

Contact Address:
Jorma Oksanen

1.30 sqsh

SQSH is an XPK packer sublibrary which implements an optimized LZ ←↩
based

algorithm combined with a 8 bit delta compression algorithm.

This packer was especially made for packing 8 bit Samples and ProTracker
style modules. It is NOT a lossy compression library, so NO quality-loss
will occur when packing Samples with this library.

SQSH is pretty fast at decompression (300K/s on A3000) so is very well
suited to compress Modules and Samples since these will typically be packed
once and unpacked many times. It is slow at compression (25K/s on A3000)
mainly because every part of the file has to be checked twice to see what
the better compression method would be.

In order to achieve reasonable compression of other types of files
(Executables, Textfiles) this packer will scan a long range (about 20K) for
identical byte sequences and if it finds any, it outputs offset and length
instead of the bytes themselves. Scanning such a long range for duplicates
is a CPU-intensive process. I have tried to make it as fast as possible
(about 25K/s on A3000) but

NUKE

XpkMaster 42 / 56

proves it can be done faster :-)

In the archive also is included a 68000 version of this library. Sorry
all you 68000 users for the long delay, but I only received one message
asking me for a 68000 version. It was Edmund Vermeulen who eventually

Contact Address:
John Hendrikx

1.31 c-utils

xBench
benchmark tool for XPK sub libraries

xDir
directory lister

xLoadSeg
LoadSeg function patch

xPack
XPK packer and unpacker for OS2.0

xPK
XPK packer and unpacker for OS1.3

xQuery
XPK sub library information

xScan
scanner command for XFH

xType
XPK type command

xUp
XPK unpacker

XpkMasterPrefs
Preferences control

Program histories are in source code.

1.32 xbench

SYNOPSIS
xBench FILENAME/A,PASSWORD/K,METHOD/M,TEST/S,ALL/S,SAVE/K

FILENAME Is needed always. This is the name of the test file(s).
You can specify names containing normal dos patterns.

XpkMaster 43 / 56

PASSWORD When given, xBench tries all crunching methods with and
without password (when possible).

METHOD Here you may specify crunchers (multiple when needed). The
format is <packername>[.<mode>] When no METHOD keyword is
used, all packer libraries are scanned.
Examples: NUKE, MASH.20, RAKE.100, MASH NUKE SHRI.100

TEST When you give this option, the decrunched buffer is
checked against the source file, errors are reported.

ALL This option scans all modes, when no special one is passed.
>>>> Use this with care, as there are 101 modes! <<<<

SAVE Here you may specify a directory, where all packed data is
saved to. When nothing is specified, the data will not be
saved. When a buffer error is reported, the saved data of
following modes may be false, as some crazy sub libraries
destroy source buffer.

When no METHOD keyword is passed, all possible types are used.

NOTE: When no password is given, all libraries needing passwords
are skipped. When password is given all libraries are called
with and without password. The real output depends on the fact, if
the library allows, needs or does not support password.

When no mode information is passed for METHOD keyword (f.e. NUKE)
or with no METHOD keyword, all modes are scanned. For every type
only the highest mode number is used. In case you specify ALL
keyword, all modes from 0 to 100 are used.

DESCRIPTION
With xBench you can create benchmarks for XPK sub libraries. The
benchmarks created will be relative to the system (hardware and
possibly software) it is run on and to the file used as data. To
generate standard XPK benchmarks shown in information data of the
sub libraries see end xpksub.doc. There standard environment and
standard files are described.

xBench uses timer.device for as accurate measurements as possible,
but the given time results can differ from call to call.

NOTE: Benchmarks are different for different file-types, so you
may produce benchmarks for text, exe-files, sounds, ...

NOTES
Best method to use is : xBench <filename> TEST PASSWORD TestPwd

If error messages "FileSize false ..." or "Decrunched buffer ..."
occur, the library producing these errors should be deleted and
the library author should be informed of the error.

When the program crashes, this is most time a problem of a
sub library. You can find the bad library when looking into
LIBS:compressors. The bad library is most time the one after the
library that produced last output (when files are sorted
alphabetically).
Reboot your system and retest the library with xBench’s METHOD
option. If it crashes again, delete it!

XpkMaster 44 / 56

WARNING
For accurate measurements xBench have to Forbid() task rescheduling
while packing and unpacking. This means that multitasking will be
disabled while xBench is running. Note that doing a Forbid() for a
long time is potentially dangerous.

THE OUTPUT

The output data shows as following:

<filename>
Type Num Version P CSize CTime CSpd USize UTime USpd Rate
BLZW: 100 3.2 19312 1.13 22162 25044 0.51 49105 22.9

Type: the library type
Num: the crunch mode which was used
Version: version and revision of the library
P: when password was used a "*" is shown here
CSize: file size after crunching
CTime: time used to compress the file (seconds)
CSpd: compression speed (bytes/sec)
USize: file size before crunching
UTime: time used to uncompress the file (seconds)
USpd: uncompression speed (bytes/sec)
Rate: crunch factor

COPYRIGHT
Freely distributable for noncommercial use.

AUTHOR

Dirk Stöcker

1.33 xdir

SYNOPSIS
xDir
xDir [filenames]
xDir [directories]

DESCRIPTION
xDir shows a listing of all files in the current directory (first
form), or of a number of files or directories. Wild cards are not
recognized. Files are sorted alphabetically.

xDir sums up the uncompressed and compressed total sizes of all
files shown.

COPYRIGHT
Freely distributable for noncommercial use.

AUTHOR

Dirk Stöcker

XpkMaster 45 / 56

1.34 xloadseg

OVERVIEW
xLoadSeg wedges into LoadSeg() and NewLoadSeg (if available) and
allows to directly run programs that were compressed using the XPK
standard. They are decompressed while being loaded. xLoadSeg uses
less than 700 bytes when installed. Should not really bother you.

HOW TO USE
Just start ’xLoadSeg’ from your startup-sequence. No need to ’run’
it. If you want to remove it, use ’xLoadSeg -q’. The 700 bytes will
be lost. Do not try to start from Workbench.

HISTORY

1.0 First release, based on PPLoadSeg by Nico François
1.1 Complete rewrite: Now able to remove patch

Symbol and Debug Hunks are now skipped, Overlayed Files
gracefully fail instead of crashing the machine.

COPYRIGHT
This program is Public Domain. You may freely use it, spread it,
enhance it or even delete it. No warranties either expressed or
implied, use it at your own risk!

AUTHOR

Christian Schneider

1.35 xpack

SYNOPSIS
xPack FILE/M/A,METHOD/K,MINSIZE/N/K,SUFFIX/K,PASSWORD/K,

ALL/S,FORCE/S,PROGRAM/S,XSCAN/S,LOSSY/S,QUIET/S

DESCRIPTION
xPack is a command line interface to the XPK compression library.
It was made to enable you to pack (or unpack) many files quickly
and comfortably, exspecially for use with the XFH-Handler.
xPack needs OS 2.04 or newer.

Main features:
- supports patterns
- can scan complete directory trees
- protection flags, filenote and date of the files are NOT changed
- packed files will not be repacked by default

For more details about XPK read the documentation supplied.

ARGUMENTS

FILE You can supply as many files, directories or patterns
as you want.

METHOD the compression algorithm to be used

XpkMaster 46 / 56

MINSIZE All files which are smaller than this value (in bytes)
will not be crunched (default 512 bytes).

SUFFIX add/remove supplied suffix if packing/unpacking
PASSWORD optional Password for encryption (or decryption)
ALL scan through directory trees
FORCE Files will be packed even if they are already XPK

packed and/or their size increases.
PROGRAM pack only executables (e.g. for

xLoadSeg
)

XSCAN create filenotes for fast directory access with XFH
(like

xScan
)

LOSSY permit lossy packing
QUIET No progress report is printed while packing.

Examples:

xPack SYS:MetaFont METHOD
NUKE
ALL

or

xPack Docs/#?.doc METHOD
IMPL
.40 SUFFIX .xpk MINSIZE 1024

or

xPack Secret.txt METHOD ENCO PASSWORD Joshua

or (Decrunch)

xPack Archive/#?.xpk Archive/#?.pp QUIET

HISTORY
1.0 (XPKSmart) first internal Release
1.0 (xSmart)

program renamed on a request by
Urban ’XPK’ Müller

progress display fits better in the CLI window now
check for increase of size by packing with XPK implemented

1.0 program renamed again on a request by
Urban ’XPK’ Müller

"FORCE", "PASSWORD" and "SUFFIX" argument implemented
file handling changed, slower but more secure
removed Enforcer hit

1.1 no problems with WShell anymore
if xPack is started with OS 1.3 a message is printed
instead of displaying a recoverable Alert

1.2 added "PROGRAM" parameter
suffixes may be removed while unpacking

1.3 wasted my time with a special function for ILBM-files
added "QUIET" parameter
"FORCE" is on automatically if a password is supplied.

XpkMaster 47 / 56

1.4 changed "FILE/M" to "FILE/M/A" in template
added "XSCAN" and "LOSSY" parameter

1.5 "LOSSY" always active in 1.4

COPYRIGHT
xPack is free to be spread on public-domain and shareware disks as
long as they are sold for a reasonable charge that is less than $6.
This applies not to Fred Fish, he and ONLY he can take more money.
For use in commercial products the permission of the author is
required.

AUTHOR

Matthias Scheler

1.36 xpk

SYNOPSIS
xPK [-frsux] [-p password] [-m method] files

-m = packing method
-f = force repack
-s = do not remove original
-r = recursively (un)pack
-u = unpack (extract)
-p = encrypt/decrypt
-x = pack executables only

DESCRIPTION
xPK is a command line interface to the XPK compression library.
It compresses a file using the method given by -m. After the
process is complete, the original file is removed and replaced
by its compressed version under the same name.

The xPK executable can be renamed to a packer name which will
then be considered as given by -m.

OPTIONS
-m = method. After -m you can indicate the name of the packer

to use, plus a mode number if the packer supports that.
-f = force. Will enforce packing of already XPK-packed files.
-s = suffix. Add a .XPK suffix to the compressed version and

do not remove the original.
-r = recur. If any directories are encountered, they are packed

recursively.
-u = unpack. Will unpack the indicated files. (same as -e).
-p = password. Will be used for encryption or decryption.
-x = executables. Will refuse to pack files that are not

executable or are overlaid. For use with xLoadSeg.

EXAMPLES
xPK -rm NUKE dh1:modules
xPK -m IMPL.50 df0:OVERVIEW
xPK -xm NUKE dh4:
xPK -r -p topsecret -m FEAL.32 dh1:private_docs

XpkMaster 48 / 56

COPYRIGHT
Freely distributable for noncommercial use.

AUTHOR

Urban Dominik Müller

1.37 xquery

SYNOPSIS
xQuery
xQuery [packer]

DESCRIPTION
xQuery shows important parameters about a packer, or if
none indicated, all packers.

EXAMPLE
xQuery FEAL

Packer : FEAL
Name : Fast Encryption ALgorithm 1.0
Descr. : FEAL-N with CBC1. Password protects data with selectable safety.
DefMode: 16
Mode : 0..4 5..8 9..16 17..32 33..100
Descr. : fastest fast safe safer safest
PkSpeed: 238 K/s 171 K/s 109 K/s 63 K/s 34 K/s
UpSpeed: 244 K/s 174 K/s 109 K/s 63 K/s 34 K/s
Ratio : 0 % 0 % 0 % 0 % 0 %

The meaning of the fields:

Packer : The 4-letter name of the packer
Name : The full packer name
Descr. : The packer description
DefMode: The default mode
Mode : Below information is valid for this range of modes
Descr. : Mode description
PkSpeed: Packing speed for this mode range
UpSpeed: Unpacking speed for this mode range
Ratio : Compression factor (higher=better)

All timings were measured on an A3000. Divide by 5 to get
timings for 68000.

COPYRIGHT
Freely distributable for noncommercial use.

AUTHOR

Urban Dominik Müller

XpkMaster 49 / 56

1.38 xtype

SYNOPSIS
xType filenames

DESCRIPTION
Prints the given files to standard output, decompressing them if
they are compressed.

EXAMPLE
xType intuition.doc.nuke

COPYRIGHT
Freely distributable for noncommercial use.

AUTHOR

Urban Dominik Müller

1.39 xup

SYNOPSIS
xUp [-s] [-S] [-p password] filenames

DESCRIPTION
xUp unpacks the given files, replacing the original by the
uncompressed version. Wild cards are not supported, and file
attributes are not yet preserved.
When the decrunching fails, the source file is preserved.

OPTIONS
-s = suffix. Keeps compressed version (when suffix is added),

stores uncompressed version under the same name minus .xpk
suffix.

-S = Same as -s, but removes any .#? suffix and not only .xpk one.
-p = password. Uses given password for decompression

EXAMPLE
xUp -p secret mytext

COPYRIGHT
Freely distributable for noncommercial use.

AUTHOR

Dirk Stöcker

1.40 xscan

SYNOPSIS
xScan FILE/M/A,ALL/S,REMOVE/S

XpkMaster 50 / 56

DESCRIPTION
xScan is a small CLI command which scans through XFH partition and
modifies them. After those modifications XFH (V1.34 or newer) will
be able to read directories MUCH faster. In fact you will no more
notice a speed difference between XFH and the normal FileSystem.

VERY IMPORTANT:
xScan will NOT work if you use it directly on a XFH partition, it
will just do nothing. Instead of that you must use it on the
PHYSICAL directory of the XFH partition. E.g. if your XFH partition
is called "XH0:" and the rootdir of is "DH0:Archive", DO NOT use
"xScan XH0: ALL" but "xScan DH0:Archive ALL".

THEORY
How does "xScan" work ?

If XFH scans through a directory it opens EVERY file to check if
it is packed or not. That’s why it is so slow.
xScan scan once through the directories for files. If it finds one
with an UNUSED filenote it adds a special one (filenote) to the file.
This filenote contains an ID string, some check values and the length
of the unpacked file(*).
If the new XFH scans through the directories it checks for such
filenotes and after finding one with still valid check values it will
take the unpacked length from the filenote without opening the file.
That’s why the new version is faster. Of course these special
filenotes will be hidden.

(*) I do not want to explain the format exactly, because people
should not use these informations.

ARGUMENTS
FILE: You can supply as many files, directories or patterns

as you want.

ALL: scan through directory trees

REMOVE: remove filenotes instead of creating them

Examples:

xScan SYS:Archive/MetaFont ALL

or

xScan Docs/#?.doc REMOVE

HISTORY
1.0 initial release for XFH 1.34
1.1 adds special filenotes to unpacked files, too
1.2 does NOT follow softlinks any more

COPYRIGHT
xScan is free to be spread on public-domain and shareware disks as
long as they are sold for a reasonable charge that is less than $6.
This applies not to Fred Fish, he and ONLY he can take more money.
For use in commercial products the permission of the author is

XpkMaster 51 / 56

required.

AUTHOR

Matthias Scheler

1.41 contacts

Please remember, that some of these addresses may be false, so do ←↩
not

blame, if you do not get answer. If you get newer information, please
contact me (the first one).

Autors of the main xpkmaster system (and some additional stuff).
Contact in the given order!

Dirk Stöcker

Christian von Roques

Urban Dominik Müller

Bryan Ford
Autors of Sublibraries:

André Beck
IDEA

Karsten Dageförde

RAKE

Stephan Fuhrmann

DLTA

Martin Hauner

HFMN

John Hendrikx

SQSH

Zdenek Kabelac

MASH

Jorma Oksanen

SMPL
, FRLE

Christian von Roques

XpkMaster 52 / 56

FAST
,
FEAL

Peter Struijk

IMPL

Marc Zimmermann

HUFF
Translators:

Dansk Jacob Laursen <laursen@myself.com>
Thomas L. Petersen <thomaslp@post1.tele.dk>

Deutsch
Dirk Stöcker

Español Dámaso D. Estévez <amidde@arrakis.es>
Français Georges ’Melkor’ Goncalves <melkor@lords.com>

Laurent Kempé <lkempe@nucleus.fr>
Hrvatski Mladen Ilisinovic <milisino@public.srce.hr>
Italiano Dario Manzoni <dmanzoni@spin.it>
Nederlands Frits Letteboer <frits.letteboer@hetnet.nl>

Leon Woestenberg <leon@stack.nl>
Norsk Kim Roar Utsi <kimme@arcticnet.no>
Polski Marcin Orlowski <carlos@amiga.com.pl>
Português Rúben Alvim <mindwalker@mail.telepac.pt>

Frederico Borges <famb@mail.telepac.pt>
Russian Oleg Sergeev <bigblack@neworder.spb.ru>
Srpski Ljubomir Jankovi <lurch@beotel.yu>

Andrija Antonijevic <TheAntony@bigfoot.com>
Suomi Pekka Kolehmainen <pekkak@icenet.fi>

Mika Lundell <c71829@uwasa.fi>
Svenska Jon Åslund <jooon@hem1.passagen.se>

Mattias Gustafsson
Andreas Pålsson <did@algonet.se> [version 3.11]

ÃeÓtina Vit Sindlar <sindlar@jackal.cis.vutbr.cz>

A lot thanks also to Marcin Orlowski of Amiga Translators’ Organization
<http://ato.home.pages.de/>, who manages translation stuff.

Other related persons:

Matthias Meixner
xpkarchive.library,

SHRI

Kristian Nielsen
XFH

Nicola Salmoria
XFH commodity

Matthias Scheler
XFH,

xPack

XpkMaster 53 / 56

Christian Schneider
XPK concept,

xLoadSeg

Jan Schwenke
HotHelp files

And surely there are a lot of persons I forgot.

1.42 contact dirk stöcker

Name: Dirk Stöcker
Address: Geschwister-Scholl-Straße 10

01877 Bischofswerda
GERMANY

Telephone: GERMANY (+49) (0)3594 706666
E-Mail: stoecker@amigaworld.com

stoecker@rcs.urz.tu-dresden.de
WWW: http://home.pages.de/~Gremlin/

http://www.amigaworld.com/support/xpkmaster/

1.43 contact christian von roques

Name: Christian von Roques
Address: Forststrasse 71

76131 Karlsruhe
GERMANY

Telephone: GERMANY (+49) (0)721 621253
or
Address: Kastanienweg 4

78713 Schramberg
GERMANY

Telephone: GERMANY (+49) (0)7422 53822
E-Mail: roques@pond.sub.org

roques@ipd.info.uni-karlsruhe.de
roques@ira.uka.de

1.44 contact bryan ford

Name: Bryan Ford
Address: 8749 Alta Hills Circle

Sandy, UT 84093
USA

Telephone: (801) 585-4619
E-Mail: bryan.ford@m.cc.utah.edu

baf0863@cc.utah.edu
baf0863@utahcca.bitnet

XpkMaster 54 / 56

1.45 contact urban dominik müller

Name: Urban Dominik Müller
Address: Schulhausstrasse 83

CH-6312 Steinhausen
SWITZERLAND

E-Mail: umueller@indiac.relog.ch
umueller@amiga.icu.net.ch
umueller@amiga.physik.unizh.ch
umueller@iiic.ethz.ch

1.46 contact karsten dageförde

Name Karsten Dageförde
E-Mail: dagefoer@rzcipa03.rz.tu-bs.de

dagefoer@ibr.cs.tu-bs.de
dagefoer@rob.cs.tu-bs.de
K.Dagefoerde@tu-bs.de

1.47 contact stephan fuhrmann

Name: Stephan Fuhrmann
Address: Ostmarkstraße 19

76227 Karlsruhe
GERMANY

E-Mail: Stephan.Fuhrmann@stud.uni-karlsruhe.de

1.48 contact martin hauner

Name: Martin Hauner
Address: Max-Born-Straße 5

38116 Braunschweig
GERMANY

E-Mail: drizzt@trashcan.escape.de

1.49 contact john hendrikx

Name: John Hendrikx
Address: Figarostraat 36

3208 PD Spijkenisse
NETHERLANDS

E-Mail: FIDO: 2:285/813.8
AMY: 39:153/201.8
NLA: 14:101/200.8

XpkMaster 55 / 56

1.50 contact zdenek kabelac

Name: Zdenek Kabelac
Address: Policna 135

75701 Valasske Mezirici
Czech Republic

E-Mail: kabi@informatics.muni.cz
WWW: http://www.muni.cz/~kabi/

1.51 contact jorma oksanen

Name: Jorma Oksanen
Address: Hämeentie 6-8 A 4

13200 HÄMEENLINNA
FINLAND

E-Mail: tenu@sci.fi
Telephone: FINLAND (+358) (3) 6120 217

1.52 contact jan schwenke

Name: Jan Schwenke
Address: Dorfstraße 55

09465 Cranzahl
GERMANY

E-Mail: jsc@fh-zwickau.de

1.53 contact peter struijk

Name: Peter Struijk
Address: Veulenkamp 28

2623 XD DELFT
NETHERLANDS

E-Mail: winfjmf@dutiws.twi.tudelft.nl

1.54 contact marc zimmermann

Name: Marc Zimmermann
E-Mail: zimmerma@ibr.cs.tu-bs.de

1.55 contact matthias meixner

Name: Matthias Meixner
Address: Sandberg 13

36145 Schwarzbach
GERMANY

E-Mail: meixner@rbg.informatik.th-darmstadt.de

XpkMaster 56 / 56

1.56 contact kristian nielsen

Name: Kristian Nielsen
Address: Groenjordskollegiet

room 6111
Groenjordsvej
DK-2300 Koebenhavn S
DENMARK

E-Mail: bombadil@diku.dk

1.57 contact nicola salmoria

Name: Nicola Salmoria
Address: Via Piemonte 11

53100 Siena
ITALY

E-Mail: MC6489@mclink.it

1.58 contact matthias scheler

Name: Matthias Scheler
Address: Schützenstraße 18

33178 Borchen
GERMANY

Telephone: GERMANY (+49) (0)5251 399031
E-Mail: tron@lyssa.pb.owl.de

FidoNet: Matthias Scheler 2:243/6310.10

1.59 contact christian schneider

Name: Christian Schneider
Address: Im Schilf 15

CH-8044 Zurich
SWITZERLAND

E-Mail: BIX: hschneider
Internet: cschneid@amiga.physik.unizh.ch

	XpkMaster
	Welcome to the XPK distribution
	The contents of the distribution
	xpk programs
	about
	history
	Preferences system overview
	preferences - xpkmaster
	preferences - global
	preferences - xpkmasterprefs
	filepatterns
	xfd support
	XPK - A STANDARD FOR DATA COMPRESSION
	gnu-license
	Documentation of the included sub libraries
	cbr0
	dlta
	duke
	fast
	feal
	hfmn
	huff
	idea
	impl
	mash
	none
	nuke
	rake
	shri
	smpl
	sqsh
	c-utils
	xbench
	xdir
	xloadseg
	xpack
	xpk
	xquery
	xtype
	xup
	xscan
	contacts
	contact dirk stöcker
	contact christian von roques
	contact bryan ford
	contact urban dominik müller
	contact karsten dageförde
	contact stephan fuhrmann
	contact martin hauner
	contact john hendrikx
	contact zdenek kabelac
	contact jorma oksanen
	contact jan schwenke
	contact peter struijk
	contact marc zimmermann
	contact matthias meixner
	contact kristian nielsen
	contact nicola salmoria
	contact matthias scheler
	contact christian schneider

